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We obtain estimates on effective actions for fermionic field theories by studying 
the flow of a cont inuous renormalization group transformation. For bosonic 
theories and statistical mechanics, we establish some new formulas for Mayer  
coefficients which are consequences of dimensional reduction. 
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1. I N T R O D U C T I O N  

We continue an investigation started in ref. 1, where the renormalization 
group, in the form of differential equations for the logarithm of a partition 
function, was used to derive estimates on connected correlation functions. 
These estimates were obtained by dominating the solution to the flow 
equation by a corresponding solution to a Hamilton-Jacobi equation. The 
limitation of this method was that the interaction was required to be boun- 
ded and analytic in a strip. In particular, it does not work for polynomial 
interactions. 

In this paper we start to address this problem in two different ways. 
The first is that for purely fermionic field theories the anticommutation 
relations have the effect of making our requirements much less restrictive: 
The second is that for bosonic field theories "dimensional reduction" may 
offer a better way of dominating the flow equation by the Hamilton-Jacobi 
equation. 

For fermions, it is well known that the exclusion principle is tan- 
tamount to the interaction being bounded, and, as a result, perturbation 
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theory is convergent, provided it is organized by successive length scales. 
This observation was used in Ref. 2 to construct the Gross-Neveu model 
in the continuum. In Section 2 we use this boundedness to show that 
fermionic differential flow equations for the renormalization group can be 
written and solved by iteration in close analogy to ref. 1. Our estimates on 
the effective action resemble results in ref. 2, but our derivation should have 
some pedagogic value, as well as being more accurate. These estimates are 
intended to be used as bounds on the irrelevant parts of the effective action 
in studies of the renormalization group. 

We now turn to bosonic theories and dimensional reduction. The flow 
equations in ref. 1 have the form 

~3V 1 [AV_(VV)2]  ' 
at 2 

t>O (1.1) 

We solved this equation by bounding its solution by the solution of a 
Hamilton-Jacobi equation 

8F  1 
+ : ( V f f )  2, t > 0  (1.2) 

at z 

The defect in this procedure is that equation (1.2) has the wrong sign and 
develops singularities immediately if the initial data are given by 2(o 4, for 
example. If, on the other hand, we could relate (1.1) to the solution of the 
Hamilton-Jacobi equation 

OV I 
8t 2 (VV)2' t > 0 (1.3) 

which has the same sign in its nonlinear part as (1.1), then we could hope 
to extend our approach to theories such a s  2 ( o  4 . The dimensional reduction 
formulas (3) express the solution of (1.1) as an integral (over initial data) of 
solutions to (1.3). We call this the dimensional reduction isomorphism. It is 
sometimes expressed in terms of integrals over classical actions, but this is 
the same thing, since the classical action is the solution to the Hamilton- 
Jacobi equation. Unfortunately, the dimensional reduction formulas are 
only known to hold to all orders in Feynman perturbation theory. Despite 
progress in ref. 4, there are as yet no cases other than Gaussian for which 
the complete isomorphism has been established nonperturbatively. 2 Indeed, 
the formulas have false implications for the Ising modeL (s) 

2 See the remark below Eq. (1-5) of ref. 4. 
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In Section 3 we show that dimensional reduction also holds within the 
Mayer expansion. It implies some new formulas for the Mayer coefficients. 
This at least establishes the isomorphism for systems for which the Mayer 
expansion converges. To establish these formulas for field theories with 
more general interactions will require more work, but our present results 
may well be useful for the dipole gas (6) and the Kosterlitz-Thouless 
transition. 

2. FERMIONS 

We begin with a review of Berezin integration and Grassman 
algebras, ~7) followed by the renormalization group and flow equations in 
this setting. Our main result is Theorem 2.3. 

2.1. Grassman Algebras and Berezin Integration 

Let ~ be the algebra over C whose generators are ~1 ..... ~.t2g with the 
anticommutation relations 

~itpj + ~j~,i= 0 Vi, j=l,...,2g 

We shall sometimes label the generators as ~b, ..... 0g, ~0i,..., ~ .  An element 
of this algebra has a unique expansion of the form 

2g 1 
F= ~ N--~. ~ fu(il,..., iN) tPil"'" ~iu 

N = 0 i l , . . . , i  N = 1,-.,2g 

where the N =  0 term is understood to be a complex number fo and for 
each N = 1, 2 ..... 2g, fN is antisymmetric. 

We define partial derivatives 0/c~O~ by demanding that a~j&pi= 6o, 
together with the requirements that 0/0~ be linear over C and an 
antiderivation on fr i.e., 

( ~ ) ) degree(A) (~ c~0----~(AB)= ~-~A B+( - -1  A-~(B)  

for A and B monomials in 0- Then we can rewrite F as a "Taylor series": 

F(0) = ~ ~ ~ 0 0 F 'Pi,'"tP,u 
N = ~ O  " i l , . . . , i N  0 

Note that ~/00~ and O/OOj anticommute. We can rewrite this more 
compactly: 

F(0) = Z 0'F(0) 0 '  
Ic { 1,...,2g } 

822/51/3-4-8 
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Note that 81 is antiordered relative to V1. We shall fix the convention that 
~ul is ordered with largest index to the right. 

The Berezin integral of F is defined by 

f F=f(1 ,  1, 2, 2 ..... g, ~) 

Thus, S F is the top coefficient of F, with a convention on the order of 
indices to fix the sign. 

Functions, in particular the exponential and the logarithm, are defined 
by their Taylor series about the N =  0 term. Thus, if we write F =  fo + Fl, 
where FI has vanishing N = 0 term, then 

oo  

eF ~ ef~ ~- ef~ 2 1 /=o ~ (F')J 

( +Ffl 
log F = log(f  o + F1) = logfo + log 1 fo,] 

= l o g f o -  ~ ( - 1 ) j l - ( F I )  j 
j=~ s \ L /  

One can only define log F iffo ~ 0. Both these series terminate after a finite 
number of terms because F~ = 0 if p > 2g, since by the anticommutation 
relations, we have $ P = 0  if p = 2 ,  3,.... 

2.2. Gaussian Integrals 

For any 2g x 2g matrix .3 of the form 

where A is a g x g symmetric and invertible matrix, we define the Gaussian 
Berezin integral S d/~ F by 

f dl~F= f [ exp( -1 /2~A0)]  F / f  exp(-1/20`30) 

The denominator does not vanish, because 

f e x p ( 1 / 2 0 . 3 0 )  Pfaffian 

-= det A 5 0  
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Let C = A  l a n d C = A - 1  so that 

~ 

If we set ~ = (01,..., Og) and ~=  (ff~,..., Og), then �89 = ~Ar This is the 
more standard type of notation. 

The gaussian integral of F e  ~ can be evaluated using 

f d# ~,s = Pfaffian Cs 

= det Cs 

Cs is the ISI x ISI matrix obtained from C by deleting all rows and 
columns whose labels are not in S, and Cs is obtained by writing each 
element of S in the form i or t-= i + g, where i = 1 ..... g, and then deleting 
rows of C if they are not unbarred elements of S and columns if they are 
not barred elements of S. The dimension Cs is �89 IS[ x �89 ISI. If ISI is not even 
or Cs is not a square matrix, ~ d# ~s = O. 

L e m m a  2.1. If C is positive, then 

Idet Csl <<. Max C y  2 
i o r i ~ S  

Proof. Suppose V, ( - ) ,  is a finite-dimensional inner product space. 
Gram's inequality states that if f(1) ..... f(N), g(1) ..... g(N)~ V and M=~= 
(f(=), g(~)), then 

1-I ) lj2 Idet M=~I ~< (f(~), f(~)) [ I  (g{al, g(/~)) 

Let A={i : ior fES} .  Let V=12(A) with inner product given by 
( fg )=Zi , /~A f i (C+eI )o  &. We let e > 0  to make the inner product 
definite and take ~ to zero at the end of the argument. Apply Gram's 
inequality with fl~)=6i~ and g~e)=6/~, i.e., standard basis elements of 
/2(A), where 7~ S and fl~ S. The lemma follows immediately. | 

P r o p o s i t i o n  2 .2 .  Suppose C = C  §  where C + and C are 
both positive and det C r 0. Then 

I d~t~b s ~<(4 max C +)lsl/2 
• ,i or  rE: S 
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Proof. We write S as the union of two disjoint sets, S =  St u S 2 ,  
where S~ contains only unbarred indices and $2 contains only barred 
indices. Then 

f d# 0 s = Idet(C + - C )sl 

= ~ ~ + d e t  C + J d e t  C(-s,\i)• 
I c S  1 J c S 2  

-G< y '  Z (max Ci+) IS[/2 
I c S l  J ~ S 2  

by Gram's inequality. We may assume that S contains equal numbers of 
barred and unbarred indices, because otherwise S d~ 0 s =  0. Therefore, S~ 
and $2 each contain 181/2 elements, and there are 2 m/2 terms in each 
sum. II 

2.3. Renormalization Group, Flow Equations 

Suppose V is an even element of ~. We wish to study the following 
nonlinear map from the even subalgebra of ff into itself, which we will call 
a renormalization group transformation: 

V(O) --* (TV)(O) = - l o g  f dkt(O' ) e v(o+~,') 

V ( O + 0 ' )  is an element of a Grassman algebra with 4g generators 
01 ..... 02g and 0'1,..., 0;g, but d#(0 ')  is a Gaussian integral just over one 
copy of ~q inside this larger algebra. 

The map T depends on the A and thus on C used to define the 
Gaussian measure. As in th Bose case, there is a semigroup property 

Tcl+ c2 =Tc l  o Tc2 

In view of this, it is natural to consider T as built up from infinitesimal 
transformations. If we introduce 

CE,,, ] = d'(~) d~ (2.1) 

where d" is continuous in r, then T[~,,] = T[,,,] o TE,,, ] provided u ~< t ~< s and 
each covariance is invertible. 

If we define 

v(t, 0 ) =  rE,,o~ v(~ ') 
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for some even V (~ then V(t) satisfies 

8 V  1 ( U V  8 V  8V'] 
at - 2 E i,/ \8ff,a~g aft, e0 / ]  (2.2) 

V(t = O) = V (~ 

The above flow equation is most easily derived by first proving that 
F =  e x p ( -  V) solves 

8F 1 aZF 

at - 2 E. . ~i j  a~]i a ~ j  
l,J 

using the definitions and integration by parts (ref. 7, 55) in analogy to 
ordinary heat equation. Then set V = - l o g  F and use the "chain rule," 
which is valid for V in the even subalgebra of f#. 

2.4 .  N o r m s  

We measure the size of C by introducing 

It Gil l  = sup Z ]Ci/[ = sup ~ C0.t 
i j i j 

aE,,s ~ = & [4max  di~(r)]  ~/2 
i , +  

The size of V is measured by 

(2.3) 

where N = 1, 2 ..... 

Theorem 2.3. 

1 
V N = - -  sup N i i~i [c~lVlq'=~ 

lII= N 

Suppose V (~ is even and 

(2.4) 

v(~ = ~ V(NO)~o u (2.5) 
N = I  

has a nonzero radius of convergence; then: 

(i) For t and ]q~] small, v(~ may be extended to a function v(t, ~o) 
by solving 

-~ = aE,,ol ~ + ~  IlC(t)l] ~ \ & p j  (2.6) 

v(O, r  = v(~ 
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For all t for which v(t, q)) exists near ~o =0,  the flow equations have a 
unique solution bounded according to 

VN(t) ~ Vu(t), N =  1, 2 .... (2.7) 

where VN(t ) is defined by 

v(t, (p)= ~ VN(t ) qjN (2.8) 
N = 0  

(ii) These bounds hold if 

K[4  fo lldJ(~)lll dvll/2+ Ka, < l (2.9) 

where 
K =  sup [NV(O)] I/N (2.10) 

N~>I 

The principle uoderlyilag the proof is the same as in the Bose case in 
ref. 1. We convert the flow eqtlation to a set of integral equations for the 
Taylor coefficients or V. The integral equations themselves have numerical 
coefficients which are Berezin integnals. These Berezin integrals are 
estimated using Proposition 2.2, leading to a majorant set of integral 
equations. We can then reverse the steps to go back to a flow equation in 
one ordinary variable q~. 

Proof of Theorem, Part (i). If we substitute the Taylor series for V 
into both sides of the flow equation and equate coefficients of tp K for each 
K, the flow equation becomes a finite set of ordinary differential equations 
for the coefficients. Standard existence and uniqueness theorems apply and 
tell us the solution is unique. 

To obtain bounds, we rewrite the flow equation as an integral 
equation 

v(t, ~ ) =  ~E,,o~ * v(0, q,) 

1 c' 

This implies, by differentiating both sides and setting ~ to zero, that 

= O)= f c!~E,.o I ~Kv(t = O, ~) oKv(t, 

+! ~'ds Z Cij(S) Z f dIA[,,s] OIOiv(s, @) ~J~JV(s, ~_1) 
- 2 0 0  i,j t=K 
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where J = / ~ I  and 8i= 0/8@i.  The + is determined by the subset I ~  K. 
(Recall that V is even.) We convert this to an equation for Taylor coef- 
ficients at ~ = 0  by substituting for V(t, tp) its Taylor expansion. We 
abbreviate 8XV(t, ~p = O) by VK(t). We have 

vK(t) = ~ vL(o) f dUE,,ol 0"~ ~ 
L ~ K  

1 t 

+-f a,E E E 
- 2 J o  id I=K r~It~{i} 

M=Jto {j} 

x f d~E,,,3 (8;~3;~, L 8J~3JO ~) 

VL(s) VM(s) 

(2.11) 

This set of integral equations for the coefficients V~ generates a series by 
iteration. 

If the series converges, it converges to the unique solution. By 
Proposition 2.2, ~ the equations 

o - I L l  - IK[ W~c(t)= ~, I VAO)l E,,oj 
L ~ K  

i,j I = K  {i} r ~ I t ~ { i }  
Ji~j M = J ~  {j} 

X W L ( S  ) I L [ +  ]M] ]1] -- ]JI--  2 W M ( S )  O'[t,S ] 

generate a majorant series, i.e., 

(2.12) 

I wK(t)l/> I v,,(t)l 

for all K, IKI >~ 1. We introduce 

where 

w(t, ~o)= ~ NWN(t) (D N - 1  

N = I  

v'(~o) = ~ NVN(t = O) (pN-1 
N = I  

1 
WN(t)=~sup ~, 

K,K~k 
IKI  = N 

w ,,( t ) 

and multiply both sides of (2.12) by (~[K[--1 .  We then sum over all K 
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containing k, and then take the supremum over k. After a calculation given 
in the Appendix, we obtain, for q~ ~> 0, 

w(t,q~)<~v'(~o+GE,,o3)+ ~ dsll~(s)lll-~Wz(S,~O+~u.,3) (2.13) 

If we integrate this inequality and set u(t, r = S'J do w(t, ~o), it becomes 

112 u(t, ~p)~<v(cp+crE,,o])+ 5 ds IIC(s)lll 

2(s, qo + aE,,s]) (2.14) x \ a q , /  

By its construction, the infinite series obtained by iterating (2.14), with the 
inequality replaced by equality, dominates the solution to the flow 
equation in the sense VN <<. UN, N>~ 1, where UN is defined by 

u(t, q))= s UN(t ) q)N 
N = 0  

Since (2.14) corresponds to the differential equation 

Ou Ou 1 (Qu~ z 
a~ -- a E,,on ~ + 2 II ~'(t)Ill \8(;o / 

u ( t  = O) = v (~ 

we are finished with the proof of part (i). 

Proof of Theorem. Part (ii). By definition of K, the initial data given 
by v(~ are majorized by 

1 KN(p N = --log(l - Kq0) v(o, ~o)= ~ 
N = I  

A short calculation shows that if we solve 

aw l (aw~ 2. 
=~ \ Wr l ' 

and then define v(t, q~) by 

v(t, ~o) = w(~, K(q~ + ~,)); 

w(0, r) = - log(1 - r) 

T =fo K2 IkC(s)[L~ ds 

(2.15) 
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then v(t, (p) solves the equation in the theorem: 

1 2 

v(0, ~o) = -log(1 - Kq~) 

The solution of (2.15) is 

1 
w(r, r) = -log(1 - ro) - ~ (r - ro) 2 

where ro solves 
1 1 

- -  + - ( r  - r o )  = 0 
1 - r o  z 

Therefore, w is analytic near r = 0 for 0 < r < 1/4 and the radius of con- 

vergence is 1 - 2 x/~. In order that v have a finite radius of convergence in 
~o, we need 

1 - -  (4"C) 1/2 > K 6  t 

which is the same as the condition of part (ii) of the theorem. 

3. D I M E N S I O N A L  REDUCTION 

We shall prove dimensional reduction formulas for classical statistical 
mechanics in this section. 

We begin by stating a theorem, Theorem 3.1, that says that dimen- 
sional reduction holds at each order in the Mayer expansion. A Mayer 
diagram is the "sum" of infinitely many Feynman diagrams, so this is not 
quite an immediate corollary of the results in the literature. Theorem 3.1 is 
an interesting formula for the Mayer coefficients, which is reminiscent of 
tree graph formulas already familiar in statistical mechanics. (8'1'9) As we 
shall argue, it is actually better, in that the tree graphs can be resummed to 
the classical action. For those systems for which the Mayer expansion 
converges, in particular, classical statistical mechanics with positive-definite 
short-range forces, a dimensional reduction formula for the logarithm of 
the partition function (Corollary 3.2) can then be proved, at least at low 
activity. 

Let v~, 1 ~< i < j ~< N, be arbitrary numbers. The standard identity used 
in high-temperature expansions is 

e x p ( - ~ v ~ / = l -  I [ e x p ( - v ~ ) - l + l ] = ~  I-I [exp(v i j ) -e ]  (3.1) 
k / 0- ' G O'eG 
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where G is summed over all subsets of 

Gmax = {ij:l <~i<j<~N} 

Brydges and Wright 

(3.2) 

i.e., (Mayer) graphs on N vertices {1,..., N}. The connected part of 
e x p ( - Z  vo) is defined by 

[ e x p ( - ~ v 0 ) ]  = ~ ~ [ e x p ( - v 0 ) - l ]  
c G connected / j eG 

(3.3) 

where G connected means G is a connected subgraph of G m a •  that meets all 
vertices. A tree graph T is defined to be a connected graph with no loops. 

For each v~j let there be given a C l function go(u), u>>,O, with the 
following properties: 

(1) g~;(0) = v 0 allzj 

(2) g/j(u) - 0 as u --* oo 

0 
(3) g'~ = 0-~ g~j is integrable 

(3.4) 

In the sequel, g0, g~ will also denote functions on ~2 X []~2 by setting 

go=go((z,-zj)2) 

where zi, zj e N2 and ( z i -  z;) 2 is the squared Euclidean distance between z~ 
and zj. 

T h e o r e m  3.1. 

(a) [ e x p ( - ~ v o ) ] r  g-~ f d  u 1Z(~ T i]~eTgo')exp(--2 gkl) 
(b) = 7r lim - -  r dNz 

where ~0= ~o((Zi-Zj) 2) and g~= O~.((zi-zj)2), and S dN-1z is integration 
over z2 ..... ZN ~ ~2 with z 1=0;  the limit as f2 increases is taken over g2 
running through a sequence of spheres in N2 of increasing radius, I~21 is the 
area of K2, Sa dNz is integration over zl ..... ZN e K2, and T is summed over all 
tree graphs. 
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Note that the integrand on the right-hand side of (a) is integrable 
because 

where 

dz ~I 2 ~t rv~(z )1 = rc du Ivo(u)l < 00 (3.5t 

The proof of Theorem 3.1 is postponed until the end of the section. 
We shall apply this theorem to the grand canonical partition function 

~ U  

Z=N~_O--~--(. f dNl~e -vu 

V N :  VN(X 1 ..... XN)= ~ L V(Xi, Xj) 
l,j 

and # is a finite measure on a single-particle state space A. For simplicity, 
we shall assume 

(A,/~) is a discrete finite space 

(for example, a particle that can occupy one of finitely many sites in a lat- 
tice and have one of finitely many charges). These assumptions mean that 
v(x, y) is a finite matrix. We assume 

v is positive definite 

is defined, using an operator notation in which v is a matrix operator and 
an integral operator with matrix indices, by 

= 4~(I |  v--1 "Jr ( - -  A )  (~) [ )  - 2  (3.6) 

or, more explicitly, 

1 fdke , k ( z_z , ) ( k2+v_ l )  2(x, x') if(x, z, x', z') 

= fo ~ dt e (Z--Z')2/4t (e -'v l)(x, x I) (3.7) 

where functions of v are in the sense of operator calculus. The second 
representation is derived from the first using 

A - 2 =  dt te ,A 
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The second expression for ~ enables us to check (3.4). (1 3) It shows 
that ~ is a function of ( z - z ' )  2. In particular, we can calculate W. We will 
use the notation 

We find 

~=(x,  z) 

y(2, if ,)= f ~ 1 at._~__~t e (z z')Z/4t (e-t~ L)(x, x') 

1 
- 4~ f dk  (k 2 + v 1) l ( x  ' x')  e i~(~-*') (3.8) 

or, as operators, 

~,= __rc(__A@I+IQv-1)  1 (3.9) 

Since ~ is positive-definite and regular when z-~ z', we can construct a 
Gaussian process (p(ff) with underlying probability measure dP such that ~o 
is almost surely continuous in z and its covariance is ~. Then 

I ~=N (P(f'k)] exp [ -- ~'N(21 ..... )~JV)] (3.10) f dP(~o) exp i k 1 = 

where 

Therefore, Theorem 3.1 says 

[ e x p ( -  VN)]~ = 

l , j  

x ( ~  r lq i~ . )~exp [kp (=k ) ]  
O ' E T  1 

(3.11) 

Estimates in the proof of Theorem 3.1 show that the limit as 1121 ~ oe is 
attained uniformly in q~, so we can interchange the limit and dP integral. 
We combine this with the Mayer expansion 

~ N  

log Z = ~ -~. f dUll (e - v~)~ 
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and interchange the sum over N with the limit and the dP(~) integral to 
obtain 

where 

l o g Z =  lim 1--~-f dP(~o)F(g2, cp) 

N 

F((2, ~p) = 7~ Z ~ dUff Z I~ ~ 1~ exp[i~o(2~)] 
" T O'eT k = l  

dfi( ) = 1_ d (x) d: IE 

(3.12) 

The interchanges of sums are justified, along with the use of the high-tem- 
perature expansion, by the estimates 

f dNfi I-~ ]~ ]~CN]O[ ,  #~ (3.13) 
/ j ~T  

which prove that the series for F converges absolutely if ]~e] is small. The 
first estimate is easily derived ~ from the integrability of ~(ff, y) in 37. The 
second is Cayley's theorem. 

Finally, we note that the series for F is a sum of Feynman diagrams 
that are tree graphs and it is well known (1~ that the sum of tree graphs is 
a power series in z for the corresponding classical action, .which in this 
case is 

1 
S((2, ~o)=-~rcK(~po)+ ~ f  d# ; dzexp{if(po(ff)+q~(s } (3.14) 

where ~0o is "classical field," i.e., the function ~o0(:~ ) for which the right-hand 
side is critical, and K(~oo) is the bilinear form associated with the inverse of 
-17'. If we integrate the variational equation for ~0o against the kernel f', we 
obtain an integral equation. By solving this equation on Loo((2• c~, 
dz • dp) using the contraction mapping principle, we find that ~Po exists and 
is unique and analytic in ~ for [~ql small. Therefore, F(~2, q~) exists and 
equals the classical action. From (3.9) 

f a: 2 + f az Z  o(x) v-l(x, y) q,(37) (3.15) 
x x, y 

In the second term ff = (x, z), 37 = (y, z), i.e., the z coordinates are the same 
in ~ and 37. 

We have proved the following theorem. 

3 See a l so  ref. 1; cf. the  r e m a r k s  fo l lowing  T h e o r e m  2.4. 
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C o r o l l a r y  3.2. For Y' sufficiently small 

log Z- -  lira - -  I dP(~o) K(Oo) 
~ I.el J 

where q% is the critical point for the quantity in brackets. 

Proof of  Theorem 3.1. This proof is inspired by some~arguments in 
ref. 11. 

It is enough to prove this theorem for g an infinitely differentiable 
function with rapid decay for all derivatives at infinity, because we can 
approximate both sides by such functions. 

Let 02 ..... ON, 02,..., ON generate a Grassman algebra with Berezin 
integral denoted by ~ d N- 10 (.) = ~ dO2 dO2.., dON dON (.). (These ideas 
were reviewed in the last section.) Then 

where zo.=z i -  zj, Ou= Oi-Oj,  zl =0,  01 = 01 =0.  This is a consequence of 
the following lemma. 

I_emma 3.3. Let g(ul,..., UM) be infinitely differentiable and 
exponentially decaying at infinity; then, 

I d N - l z f d N - l O  g(Ul,.., , UM) = (--/~) N - I  g(0) 

where u 1 ..... UM are arbitrary bilinears of the form 

N 

u(z, O) = ~ (z~A,jzj + OiAijOj) 
2 

with A o positive-definite. 

Proof of  Lomma 3.3. Substitute into the left-hand side 

g(ul ..... urn) = f dgk  ~,(kl,..., kg )  exp[i(k �9 u)] 
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with each ki, i=  1,..., M, integrated along a contour that is an imaginary 
displacement of the real axis. This manifests decay in z, so that we can 
interchange the k integrals with the .[ d N- lz I dN- 10" NOW use 

f dN-1zf d N tOexp[i(k'u)] 

[where each component of u 
E O~A,jOj] 

SO 

= { f  dN-~zexp[ik'u(z)]} 

• {f dN-~Oexp[ik'u(O)]} 

has the form u(z)=~z~Agzj, u(O)= 

= (2~)N-- 1 det 1(--k" A/2) det(k �9 A) 

= ( _ ~ ) N - ,  

f d N 1Z f d N -  10 g ( u  I ..... L/M) 

f, = (_~)N-1 j dgk ~(kl ..... kM)= (_~)N-I  g(O) 

which was to be proved. | 

Proof of Theorem 3.1 (continued). Set C=  (-1/~) N-1. We have 

=Cf{expI-~g~(z~+OuOij)]} c 

= C ~ f 1~ {exp[-g~(z~+O~O~)]-l} 
G connected ij ~ G 

= - v , j ( z ~ ) ]  - I } 

G connected G ij ~ G \ H  

• H ( { e x p [  - 2 -,  2 -v,,(z~,] } [-v~t(zk, ) 0~,0~t]) (3.17) 
k l~  H 

2 In this last equality 'we expanded e x p ( - g ) -  1 in a Taylor series about zu, 
regarding OejOij as the perturbation. The Taylor series ends after two terms 
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because 0 , 0 o = 0 .  The Taylor expansion was followed by expanding the 
product: 

l-I (A ,+Bi j )= E [-I A ,  I] Bk/ 
ijeO HcG ijeG\H kl~H 

The Berezin integral ~ d N 10 is now performed. First we note that ~ d N 10 
annihilates any term for which H is not a tree that connects all vertices. 
For  example, if H contains a loop L, then the variables Ok/, kl ~ L, are not 
linearly independent (recall that 0k/=0k--0/) ,  SO O~,/,kIeH, are not 
linearly independent and 

f d N -  10 Ok~Ok~ 0 lq 
kit H 

If H has no loops, but fails to connect all the vertices, then H has strictly 
fewer than N - 1  lines (the number of lines in a connected tree graph on 
{ 1,..., N}), and so 

f d N -  10 I-I OklOkl = 0 
klEH 

because there is no 2 ( N -  1)-order term in the product. Thus in (3.17) we 
can assume that the sum over H is over connected tree graphs. 

Now we claim that if H is a connected tree graph, then 

f d N -  10 OklOkl 1 [I 
kl~ H 

To see this, note that for i =  2 ..... N 

0i= E 0jk 
j k  ~ p ( i )  

where P(i) is the unique path in H that joins i to 1. By relabeling vertices, 
we can put the linear change of variables into a lower triangular form and 
see that the Jacobian is ___ 1. When the same change of variables is applied 
to the O's, we obtain an overall Jacobian of 1. Then the claim follows from 
the Berezin change-of-variables formula. 

These assertions, taken together, show that (3.17) becomes 

[(  )] exp - ~ v o. = C ~ ~ d x -  lz 
c G c o n n e c t e d  T c  G ' 

• I 1  - 1}  
O" �9 G\T 

• ~ ({expE_~,j(z,~)]}E ~, 2 v~(z,;)]) 
U~T 
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Now we interchange the sums over G and T and use 

I~ [ e x p ( - * ? u ) - l ] = e x p ( -  ~ ~u) 
G ~  T i j e G \ T  i jeGmax\T 

which is (3.1)with Gma I replaced by GmaxkT. Note that if GD T, it is 
connected, so that a sum over all connected G D T is an unconstrained sum 
over G\T. Thus, we obtain 

Iexp(--~vo)]c=C~rf  dN lzo. l~I\Texp(--~u) 

x l-I [ exp( -g~ , ) ] ( -vb)  
k l e  T 

and when the products are combined, Theorem 3.1, part (a), is proved. 

Proof of Part (b). By translation invariance in z we can average the 
result of part (a) over Zm in some region f2 in N2 without changing it, i.e., 

where 

I=(1)  N ] (~r uOr ~ )  exp ( - ~  ~,,) 

The difference between this and the result in part (b) is 

D = dNz I 

where 

R=U R,, Ri= {zleg2, zie~2\g2} 

Divide (2 into a smaller concentric sphere f2' and a shell S in such a way 
that as we take f2 increasing to all of ~2, ISI/[f2I ~ 0 and d =  dist(f2', f2 c) 

oe. We have 

I~1 I~'l Js 

+ f-Jy fo, dZl fz2 zd>d dm lZ ' 

822/51/3-4-9 
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The first term tends to zero as I~ l  ~ ~ because ISI/I(2[ ~ 0 .  The second 
term goes to zero because it is less than 

f I(0, zz ..... Z N )  d N 1 Z 

[z21 > d 

We have used the fact that I is integrable in z2 ..... ZN uniformly in (2. | 

A P P E N D I X .  D E R I V A T I O N  OF (2 .13)  

For the first term on the right-hand side of (2.12), (2.13), we have 

Z I VLI~ILI )l~t~ Z Z I VLI~ILI IKJq~lKI X 
L ~ K  K o k  L ~ K  

= ~ IVLI 5", ~ILI--)KkOIKI--1 
L ~ k  K ~ k  

K ~ L  

= ~ I VLI Z ~lL'l IK'J~lK'l 
L ~ k  K ' c L '  

[-where L ' = L - -  {k}, K ' = K -  {k}] 

= ~ tVLI(~o+a)~L')~<V'(~O+~) 
L o k  

by the definition of v', since IL'I = ILl - 1. 
For  the second term we have to examine 

ds E Ieol E E E 
i , j ~ k  K ~ k  I c K  L D I u { i }  

M = J ~  {j} 

X 0 "ILl § IMI 2 I/I I J Iq) lg[  1 

W L  W M  

(A1) 

There are additional constraints, I ~ i, J ~ j, i, j # k, and J = K/L which we 
are not writing in, but which should be kept in mind. We recall that K is 
the disjoint union of I and J, so that 

E E (.)= E E (.)+ E E (.) 
K ~ k  I = K  l ~ k  J c l  c J ~ k  l = J  c 

~< ~ ~ ( ' ) +  ~ Z(') (A2) 
l g k  J J ~ k  I 

We substitute this into (A.1) and obtain two expressions corresponding to 



Mayer Expansions and Hamilton-Jacobi Equation 455 

the two terms on the right of  (A.2). The  first is, after interchanging the J 
and M sums, 

i,j I ~ k  L ~ I ' . ~ { i }  

x 2 wM ~ O'lLl+lMI-2-1'l-I~lq~ I'l+l~l-~ 
M ~ j  J ~ M  

We can do the sum over  J using the b inomial  theorem 

Z I~l IM'l-IJIqOIJl= (~y+ (p)lM'i 
Jc M' 

with M '  = M -  {j}. Then we est imate the sum over  M using the definition 
of w(t, q)) = w(~0). The  result is 

i,j l ~ k  L ~ l w  {i} 

N o w  do the sum over  j, 

~ ~ ; d s  ]lCtll 2 2 2 
i l ~ k  L ~ [ w { i }  

L ~ k  

WLalcl 1-1~l(pltl lw (~o+a  ) 

• 2 2 
i ~ L - - { k }  l ~ k  

l c L - - { i }  

o-ILl 1--Illq~[ll IW(~ + O. ) 

(the sum over  I is done  using the b inomial  theorem,  as above,  then the sum 
over  i) 

L ~ k  

E ] 
When we r emember  that  this is half of  (A.1) because we have an equal 
cont r ibut ion  f rom each term on the right of (A.2), we see that  we have 
proven  (2.13). 
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